个人信息Personal Information
副教授
硕士生导师
主要任职:环境学院副院长
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:环境学院
学科:环境工程
办公地点:环境楼B711
联系方式:jruofei@dlut.edu.cn
电子邮箱:jruofei@dlut.edu.cn
Catalytic performance of functionalized polyurethane foam on the reductive decolorization of Reactive Red K-2G in up-flow anaerobic reactor under saline conditions
点击次数:
论文类型:期刊论文
发表时间:2015-01-01
发表刊物:BIOPROCESS AND BIOSYSTEMS ENGINEERING
收录刊物:SCIE、PubMed、Scopus
卷号:38
期号:1
页面范围:137-147
ISSN号:1615-7591
关键字:Anthraquinone-2-sulfonate; Polyurethane foam; Decolorization; Catalytic performance; Reactive Red K-2G
摘要:Soluble anthraquinone compounds including anthraquinone-2-sulfonate (AQS) and anthraquinone-2,6-disulfonate can accelerate anaerobic decolorization of azo dyes. To realize the application of these compounds, the catalytic performance and stability of AQS-modified polyurethane foam (AQS-PUF) for Reactive Red K-2G decolorization were investigated in an up-flow anaerobic bioreactor under saline conditions. The results showed that the optimal influent pH value and hydraulic retention time were 7 and 10 h, respectively, in a continuous-flow bioreactor amended with AQS-PUF (R1). Under the above conditions, R1 (93.8 % color removal) displayed better decolorization performance than the bioreactor amended with PUF (R2, 64 % color removal) in 10 days, when influent K-2G concentration was 50 mg/L. Moreover, compared with R2, R1 could more effectively cope with 50-400 mg/L K-2G and exhibited better stability with over 85 % color removal efficiency within 75 days. Further bacterial community analysis using polymerase chain reaction-denaturing gradient gel electrophoresis showed that AQS-reducing bacteria played an important role in accelerating K-2G decolorization in R1. Extracellular polymeric substances analysis found that biofilm formed on AQS-PUF had very limited negative effects on K-2G decolorization. The catalytic performance of used AQS-PUF only decreased less than 9 % in batch experiments. These findings indicate that AQS-PUF has potential application for the treatment of azo dye-containing wastewater.