黄一

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:日本广岛大学

学位:博士

所在单位:船舶工程学院

学科:船舶与海洋结构物设计制造

电子邮箱:huangyi@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Pitch motion problem induced by dynamic positioning system for new sandglass-type floating body

点击次数:

论文类型:期刊论文

发表时间:2017-03-01

发表刊物:JOURNAL OF MARINE SCIENCE AND TECHNOLOGY

收录刊物:SCIE、EI

卷号:22

期号:1

页面范围:162-175

ISSN号:0948-4280

关键字:Sandglass-type floating body; Dynamic positioning; Thruster system; Pitch motion problem; Experiment

摘要:In this paper, a new concept of sandglass-type floating body, which can overcome the performance limitations of traditional ship-type and cylindrical FDPSO (floating drilling production storage and offloading), is proposed as research subject. In the general design of dynamic positioning systems, it is adequate to deal with a three-degree of freedom problem in the horizontal plane. However, the new floating body with small water-plane area and low metacentric height may cause an unintentional coupling phenomenon between the pitch and surge motions by the thruster system. Therefore, first by numerical boundary element method (BEM) based on wave potential theory and experiments, the pitch motion characteristic of the sandglass-type model is studied and meanwhile the numerical method of this paper is validated. Furthermore, two dynamics models with and without consideration for the additional pitch moment by the thruster systems are introduced and numerically simulated, which can show the problem of pitch motion induced by the positioning thrusters. Then by the mass-spring-damper systems with two-degree of freedom, the influence of additional pitch moment by the thrusters on the pitch and surge motion performances is theoretically analyzed. Finally, based on the essential reason of pitch motion problem, a control law considering pitch inertia effect has been used and proven to be effective to decrease the pitch motion response.