Hits:
Date of Publication:2014-01-01
Journal:大连理工大学学报
Volume:54
Issue:01
Page Number:28-36
Abstract:在以短肽定义的或以抗原定义的疫苗设计中,识别哪个来自病原体的蛋白质片段会结合MHCⅡ分子是个重要问题.多数MHCⅡ表位预测的研究很少给出结合特异性的定量分析,所以这些模型的精确度仍然需要进一步提高.AUC Optimized Gibbs(AOG)使用约化同源性的AUC值而不是相对熵来引导采样,使得正样本和负样本的信息都被用于模型的训练.在10个HLA-DR4(B1*0401)原测试集和约化同源性测试集的测试中,AOG得到的平均AUC值分别是0.771和0.713,优于Gibbs的0.744和0.673.在定量IEDB的MHCⅡ测试集中,AOG得到的平均AUC值是0.766,而TEPITOPE得到的平均AUC值是0.718.从HLA-DR4(B1*0401)数据提取的信息可以识别某些有明显特异性的位置,即P1、P4、P6和P9位置,其对MHC-短肽结合有明显的影响.
Note:新增回溯数据