个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:数学科学学院525
电子邮箱:lyfdlut@dlut.edu.cn
On numerical invariants for homogeneous submodules in H-2 (D-2)
点击次数:
论文类型:期刊论文
发表时间:2017-01-01
发表刊物:NEW YORK JOURNAL OF MATHEMATICS
收录刊物:SCIE、Scopus
卷号:23
页面范围:505-526
ISSN号:1076-9803
关键字:Hardy space over the bidisk; submodule; core operator; fringe operator; Toeplitz matrix
摘要:The Hardy space H-2(D-2) can be viewed as a module over the polynomial ring C[z, w] with module action defined by multiplication of functions. The core operator is a bounded self-adjoint integral operator defined on submodules of H-2(D-2), and it gives rise to some interesting numerical invariants for the submodules. These invariants are difficult to compute or estimate in general. This paper computes these invariants for homogeneous submodules through Toeplitz determinants.