个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林大学
学位:博士
所在单位:数学科学学院
学科:基础数学
办公地点:数学科学学院525
电子邮箱:lyfdlut@dlut.edu.cn
基于 AUC Optimized Gibbs 方法的MHC Ⅱ-短肽配体结合特异性预测
点击次数:
发表时间:2014-01-01
发表刊物:大连理工大学学报
期号:1
页面范围:28-36
ISSN号:1000-8608
摘要:In the design of peptide-based or other defined antigen-based vaccines ,it is important to know w hich fragments of pathogen-derived proteins would bind to the M HC Ⅱ molecules .Most studies of the M HC Ⅱ epitope prediction rarely gave the quantitative analyses of binding specificities .So the accuracy of these models still needs to be improved .AUC Optimized Gibbs (AOG) method uses the homology reduced AUC , rather than the relative entropy to guide the sampler . It makes both the positive and negative information of the samples be incorporated into the model . AOG achieves average AUC values of 0 .771 and 0 .713 on the ten original and homology reduced HLA-DR4 (B1 * 0401) epitope benchmarks ,which are better than 0 .744 and 0 .673 by the Gibbs sampling method . In the quantitative IEDB M HC-Ⅱ benchmarks , AOG achieves an average AUC value of 0 .766 , compared to 0 .718 by the TEPITOPE .A detailed inspection of information extracted from HLA-DR4 (B1 * 0401 ) data allows the identification of positions with obvious specificities ,i .e .,P1 ,P4 ,P6 and P9 positions ,which have distinct influence on the M HC-peptide binding .
备注:新增回溯数据