个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理. 功能材料化学与化工
办公地点:大连理工大学西部校区化工实验楼A405
联系方式:手机:13009436945
电子邮箱:wangjinyan@dlut.edu.cn
Recent progress on polymer photonic materials and optical waveguide devices
点击次数:
论文类型:会议论文
发表时间:2008-11-16
收录刊物:EI、CPCI-S、SCIE、Scopus
卷号:7158
关键字:Optical waveguide devices; polymer; photonic materials; photonic component; microring resonator
摘要:Recent progress in research on polymer photonics is reviewed in this paper, including new concepts of polymer-based photonic materials, components and devices. Novel polymer photonic materials developed in our photonic research group, polysiloxanes (named as PSQ-Ls), are reported, including two kinds of PSQ-Ls, named as PSQ-LL and PSQ-LH. These polymer photonic materials are of a liquid and can be cured by UV light irradiation or by heat. The characterization of the optical films and waveguides based on the novel polymer materials, including refractive index, birefringence, optical loss and thermal stability, is given in detail. By blending PSQ-LL and PSQ-LH, the refractive indexes can be tuned linearly from 1.4482 to 1.5212 at 1310nm and from 1.4478 to 1.5198 at 1550nm. The birefringence is below 0.0005 with the variation of PSQ-LL content. These materials exhibit low optical losses of 0.31dB/cm at a wavelength of 1310nm and 0.70dB/cm at 1550nm, and high thermal stability with 1% decomposition temperatures of 297 degrees C (in air) and 340 degrees C (in N-2) for PSQ-LH, and 313 degrees C (in air) and 370 degrees C (in N-2) for PSQ-LL. Optical waveguide components such as micro-ring resonators and waveguide gratings based on PSQ-Ls are fabricated by photolithography-etching method and by UV imprint technology, respectively. The experimental measurements show that the polymer-based micro-ring resonators exhibit an excellent resonant filtering function. Potential applications of the polymer-based micro-ring resonators for optical communications and optical sensing are discussed.