个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理. 功能材料化学与化工
办公地点:大连理工大学西部校区化工实验楼A405
联系方式:手机:13009436945
电子邮箱:wangjinyan@dlut.edu.cn
Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties
点击次数:
论文类型:期刊论文
发表时间:2016-01-01
发表刊物:RSC ADVANCES
收录刊物:SCIE、EI
卷号:6
期号:15
页面范围:12009-12020
ISSN号:2046-2069
摘要:In this work, new classes of phthalazinone-based covalent triazine frameworks (PHCTFs) were prepared by ionothermal synthesis from two full rigid dicyano building blocks with rigid, thermostable and asymmetric N-heterocycle-containing structures. The surface and internal morphologies of PHCTFs were examined by FE-SEM and TEM. The resultant microporous polymers, PHCTFs, exhibited BET specific surface areas up to 1845 m(2) g(-1) and a moderately narrow pore size distribution. According to the sorption measurements, the CO2 uptake can be up to 17.1 wt% (273 K/1 bar) and the H-2 uptake can be up to 1.92 wt% (77 K/1 bar). Moreover, the initial slopes of the single component gas adsorption isotherms in the low pressure range were used as the gas separation ratios. The obtained polymer networks possess satisfactory CO2/N-2 selectivity performance up to 52 and CO2/CH4 selectivity up to 12. Combining the relationship of the structure and performance, it can be concluded that a twisted and non-coplanar topology conformation can be used to improve the porosity of microporous organic polymers. At the same time, the nitrogenand oxygen-rich characteristics of the phthalazinone core endow the networks with a strong affinity for CO2 and thereby high CO2 adsorption capacity. So the pore structure and chemical composition may play very important roles on the adsorption properties of small gas molecules.