个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:哈尔滨工业大学
学位:博士
所在单位:环境学院
学科:环境工程. 环境科学
电子邮箱:zhanghm@dlut.edu.cn
A novel corrugated wall channel module for external concentration polarization mitigation in forward osmosis process
点击次数:
论文类型:期刊论文
发表时间:2018-11-01
发表刊物:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
收录刊物:PubMed、SCIE、Scopus
卷号:25
期号:32
页面范围:32791-32801
ISSN号:0944-1344
关键字:Forward osmosis; External concentration polarization; Corrugated wall channel module; Vortex
摘要:Much work has been conducted on the topic of forward osmosis (FO), but only a few studies have focused on mitigating external concentration polarization (ECP). This study introduced a simple structure, the corrugated wall channel, to the design of FO module, to induce vortex, and then mitigate ECP. In this study, the corrugated wall channel module (CWCM) was tested under given conditions, with a traditional flat membrane module (FMM) as control. CWCM could mitigate ECP and then enhance water flux. When deionized water was taken as feed solution (FS) and 2-M NaCl solution as draw solution (DS), the water flux enhancement was 16.49 and 18.51% in FO mode (active layer facing FS) and PRO mode (active layer facing DS), respectively. When 0.5-M NaCl solution was taken as FS, the corresponding values were 15.92 and 17.13%, respectively. Computational fluid dynamics (CFD) analysis showed that the CWCM could induce vortex, promote the mixing of the solution in the module, and further contribute to the increase of water flux. The specific shape of CWCM affected its performance on mitigating ECP. Also, the more tortuous CWCM exhibited higher water flux. In addition, CWCM could lessen membrane fouling.