张捍民

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:哈尔滨工业大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

电子邮箱:zhanghm@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control

点击次数:

论文类型:期刊论文

发表时间:2019-12-20

发表刊物:SCIENCE OF THE TOTAL ENVIRONMENT

收录刊物:SCIE

卷号:697

ISSN号:0048-9697

关键字:Conductive forward osmosis membrane; Carbon; Anti-fouling; Electrostatic repulsion

摘要:Membrane fouling in forward osmosis (FO) significantly affects water flux and membrane life, which restricts the further development of FO. In this work, carbon nanoparticles were blended in polyethersulfone (PES) to prepare a conductive thin film nanocomposite (TFN) FO membrane to control the membrane fouling in FO processes. The membrane containing 4 wt% carbon exhibited an optimum performance with water flux of 14.0 and 17.2 LMH for FO (active layer for FS) and PRO (active layer for DS) modes, respectively, using DI water as feed solution and 1 M NaCl as draw solution and electrical conductivity of 170.1 mS/m. Dynamic antifouling experiments showed that, compared with no voltage applied, the water flux decline of surface charged TFN-FO membrane was significantly retarded. For CaSO4, BSA and LYS as model contaminants, the water fluxes were improved by 31%, 13% and 7% under the voltages of +1.7 V, -1.7 V and +1.7 V, respectively. Moreover, the charged membrane is more effective in relieving the initial membrane fouling, and contaminant-contaminant interactions mechanism dominates the formation of further membrane fouling processes. Therefore, for contaminants with different charge conditions, customizing membrane surface charges is a feasible and promising approach for controlling membrane fouling in situ method. (C) 2019 Published by Elsevier B.V.