张捍民

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:哈尔滨工业大学

学位:博士

所在单位:环境学院

学科:环境工程. 环境科学

电子邮箱:zhanghm@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Customized thin and loose cake layer to mitigate membrane fouling in an electro-assisted anaerobic forward osmosis membrane bioreactor (AnOMEBR)

点击次数:

论文类型:期刊论文

发表时间:2020-08-10

发表刊物:SCIENCE OF THE TOTAL ENVIRONMENT

收录刊物:SCIE

卷号:729

ISSN号:0048-9697

关键字:Electro-assisted; AnOMEBR; Electrostatic repulsion; Membrane fouling alleviation; Membrane surface charge

摘要:Anaerobic forward osmosis membrane bioreactor (AnOMBR) is a potential wastewater treatment technology, due to its low energy consumption and high effluent quality. However, membrane fouling is still a considerable problem which causes dwindling of water flux and shortening the membrane lifetime. In this study, electro-assisted anaerobic forward osmosis membrane bioreactor (AnOMEBR) was developed to treat wastewater and mitigate membrane fouling, in which the conductive FO membrane was used both as the separation unit and cathode. The formation, development and alleviation of membrane fouling in AnOMEBR were investigated. The results showed that the soluble microbial products (SMP) content and the proteins/polysaccharides (PN/PS) value in AnOMEBR were 26% and 15% lower than that in AnOMBR, respectively. The absolute value of Zeta of sludgemixture in AnOMEBR was 1.2 times that of the AnOMBR. The increase in the interaction between themembrane surface and the negatively charged foulants could inhibit the adsorption of foulants on membrane surface in the initial stage of membrane fouling. The strong interaction among foulants further affected the composition, structure and thickness of the cake layer on the FO membrane surface. AnOMEBR with a shorter hydraulic retention time, a higher organic loading rate and a lower osmotic pressure difference, could still obtain a lower flux decline rate of 0.063 LMH/h, which was 35.7% lower than AnOMBR. The wastewater treatment capacity of AnOMEBR was nearly 1.5 times that of the AnOMBR. This work provides an efficient strategy for mitigating membrane fouling and improving wastewater treatment capacity. (C) 2020 Elsevier B.V. All rights reserved.