个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中国地震局工程力学研究所
学位:博士
所在单位:土木工程系
学科:结构工程. 防灾减灾工程及防护工程
SEISMIC COLLAPSE ANALYSIS OF CONCENTRICALLY-BRACED FRAMES BY THE IDA METHOD
点击次数:
论文类型:期刊论文
发表时间:2017-09-01
发表刊物:ADVANCED STEEL CONSTRUCTION
收录刊物:SCIE、EI
卷号:13
期号:3
页面范围:273-292
ISSN号:1816-112X
关键字:Concentrically-braced frames; collapse limit state; incremental dynamic analysis; ductility demand spectrum; collapse ductility spectrum
摘要:Steel concentrically-braced frames (CBFs) as seismic lateral force resisting systems have been widely used in seismic regions. The incremental dynamic analysis (IDA) is adopted to construct the collapse ductility spectrum for the CBF considering the P-Delta effect and sudden loss in strength and stiffness, which is physically more meaningful than existing baseline criteria. The design performance plot is constructed by newly combining the collapse ductility spectrum with ductility demand spectrum on the same figure, from which the threshold period and design ductility region for the frame are determined. A parametric study is conducted for the CBF over the full range of periods and parameters. The results show that the reserve capacity of the CBF contributes appreciably to collapse prevention, and the presented approach is more suitable for assessing the collapse of CBFs with dynamic instability. For moderate seismic regions, the threshold periods of the CBF determined by both the collapse ductility spectrum and existing baseline criteria are quite close. However, for high seismic regions, using the global drift angle limit may yield non-conservative results, since it fails to address the dynamic instability of CBFs with short periods.