李宏男

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中国地震局工程力学研究所

学位:博士

所在单位:土木工程系

学科:结构工程. 防灾减灾工程及防护工程

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A novel time reversal sub-group imaging method with noise suppression for damage detection of plate-like structures

点击次数:

论文类型:期刊论文

发表时间:2018-03-01

发表刊物:STRUCTURAL CONTROL & HEALTH MONITORING

收录刊物:SCIE、EI

卷号:25

期号:3

ISSN号:1545-2255

关键字:damage detection; lead zirconate titanate (PZT); noise suppression; structural health monitoring; time reversal imaging (TRI)

摘要:In this paper, a new time reversal imaging (TRI) algorithm with noise suppression is developed for the application of imaged based structural damage detection of plate-like structures. The conventional TRI method suffers from performance degradation in high noise condition. The proposed method addresses the aforementioned issues. First, an array of detection transducers is used and is divided into several subgroups. Then, the echo signals of the subgroups are time reversed and reemitted via numerical computation. Finally, the cross-correlation functions of the summation of refocused time reversed signals in each subgroup are obtained to locate damages. The time reversed signals at the reference time are irrelevant to the noise, meanwhile, the multiple refocused signals in each subgroup are first added and then cross-correlated. Therefore, the proposed method can effectively suppress noise. To validate the effectiveness of proposed method, 2 experiments were performed. The 2 experiments involved 2 aluminum plate specimens. Each specimen was equipped with 4 surface-bonded lead zirconate titanate transducers. One specimen involved a simulated damage (an addition of a mass), and the other one involved an actual through-hole damage. The experimental performances of the proposed method are compared to those of the conventional TRI method. The imaging results demonstrated that the damage on both specimens was clearly displayed with high spatial resolution by the proposed method even under the low signal-to-noise ratio condition. On the contrary, the location of the damage computed by the conventional TRI method was submerged in noise and cannot be distinguished.