个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中国地震局工程力学研究所
学位:博士
所在单位:土木工程系
学科:结构工程. 防灾减灾工程及防护工程
Design and numerical evaluation of an innovative multi-directional shape memory alloy damper
点击次数:
论文类型:会议论文
发表时间:2007-03-19
收录刊物:EI、CPCI-S、Scopus
卷号:6525
关键字:shape memory alloy; superelasticity; multi-directional damper; Graesser model; experiment; working mechanism; mechanical model; numerical simulation
摘要:Superelastic shape memory alloy (SMA) is a potential candidate for use in structure damping devices due to its unique mechanical properties. In order to mitigate the vibration of a structure subjected to earthquake tremors from different directions, an innovative, multi-directional SMA-based damper is advanced. The damper, with two movable cylinders attached to four groups of SMA strands arranged in a radial symmetry, can not only function in a plane, but also can work vertically and rotationally. Based on experimentation, the Graesser model of superelastic SMA is determined. By analyzing the damper's mechanism working in different directions, the corresponding theoretical models are developed. Numerical simulations are conducted to attain the damper's hysteresis. Working in a plane, the damper, with a 3% initial strain, provides a rectangular hysteresis with the maximum amount of damping. A rectangular flag hysteresis can be supplied in the absence of a pre-stress in the wires, going through the origin with a moderate amount of energy dissipation and higher force capacity. Moreover, the damper has better working capacities (i.e. force, stroke and energy dissipation) if the deflection is parallel to the internal bisectors of the tension axes. Working vertically or rotationally, similar triangular flag hysteresis is generated with small energy dissipation and a self-centering capacity. For a given deflection, the initial strain (3%) increases the force of the damper, but decreases its stroke.