李宏男

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中国地震局工程力学研究所

学位:博士

所在单位:土木工程系

学科:结构工程. 防灾减灾工程及防护工程

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Dynamic tensile behaviour of fibre reinforced concrete with spiral fibres

点击次数:

论文类型:期刊论文

发表时间:2012-12-01

发表刊物:MATERIALS & DESIGN

收录刊物:Scopus、SCIE、EI

卷号:42

页面范围:72-88

ISSN号:0261-3069

关键字:Fibre reinforced concrete; Spiral steel fibre; Dynamic split tensile test

摘要:This paper performs drop-weight splitting tests to study the dynamic tensile properties of fibre reinforced concrete (FRC) materials with different steel fibres. A renovated splitting tensile testing method was developed to ensure a more qualified experimental process. The splitting tensile impact tests were conducted with an instrumented drop-weight impact system consisting of a hard steel drop weight, a fast-response load cell, a high-speed video camera and a high-frequency data acquisition system. The quasi-static compressive and splitting tests were also conducted to obtain the static properties of the FRC materials. The commonly used hooked-end steel fibre and a new spiral shaped steel fibre were tested in this study. The high-speed video camera was used to capture the detailed failure process, deformation and cracking process of the tested specimens. Average strain rates and the cracking extension displacement and velocity under impact loading were estimated by analysing the recorded high-speed images. The strains were also measured by the strain gages on the specimen surface. The dynamic stress-strain and stress-COD (cracking opening displacement) relations, the rate sensitivity of tensile strength and the corresponding energy absorption capacity of plain concrete and FRC with different fibres were obtained, compared and discussed. The advantage and effectiveness of the new spiral fibre in increasing the performance of FRC under dynamic tensile loading were examined. The results show that FRC with spiral fibres outperforms that with hooked-end fibres, and is a promising construction material in resisting dynamic loadings. (c) 2012 Elsevier Ltd. All rights reserved.