李宏男

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中国地震局工程力学研究所

学位:博士

所在单位:土木工程系

学科:结构工程. 防灾减灾工程及防护工程

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Cyclic Model for Superelastic Shape Memory Alloy Based on Neural Network

点击次数:

论文类型:期刊论文

发表时间:2012-09-01

发表刊物:RARE METAL MATERIALS AND ENGINEERING

收录刊物:SCIE、PKU、ISTIC

卷号:41

页面范围:243-246

ISSN号:1002-185X

关键字:shape memory alloy; superelasticity; radial basis function neural network; cyclic constitutive model

摘要:The mechanical behavior of superelastic shape memory alloy (SMA) under loading and unloading cycles varies gradually and approximates to a steady state ultimately. Based on the cyclic loading tests of superelastic SMA wires, a radial basis function neural network (RBFNN) constitutive model is proposed. In this model, the input includes the number of loading cycles, the index of loading and unloading and the strain; and the output was the stress. Numerical simulations indicate that the model can simulate the cyclic hysteretic behavior of SMA correctly and has a high accuracy of prediction.