location: Current position: Home >> Scientific Research >> Paper Publications

Molecular Dynamics Simulation of Fracture Strength and Morphology of Defective Graphene

Hits:

Indexed by:期刊论文

Date of Publication:2013-11-06

Journal:JOURNAL OF NANO RESEARCH

Included Journals:SCIE、EI、Scopus

Volume:25

Page Number:181-187

ISSN No.:1662-5250

Key Words:Graphene; Defects; Morphology; Molecular Dynamics Simulation

Abstract:Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possible morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of graphene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.

Pre One:含界面裂纹的压电智能梁断裂分析

Next One:Adaptive integration technique for nearly singular integrals in near-field acoustics boundary element analysis