location: Current position: Home >> Scientific Research >> Paper Publications

Novel phosphorus doped carbon nitride modified TiO2 nanotube arrays with improved photoelectrochemical performance

Hits:

Indexed by:期刊论文

Date of Publication:2015-10-21

Journal:NANOSCALE

Included Journals:SCIE、EI、Scopus

Volume:7

Issue:39

Page Number:16282-16289

ISSN No.:2040-3364

Abstract:Novel phosphorus-doped graphitic-carbon nitride (P-C3N4) modified vertically aligned TiO2 nanotube arrays (NTs) were designed and synthesized. They can significantly enhance the conduction and utilization of photogenerated charge carriers of TiO2 NTs. The heterostructure was successfully fabricated through a three-step process: electrochemical anodization and wet-dipping followed by thermal polymerization. The prepared P-C3N4/TiO2 NTs exhibit enhanced light-absorption characteristics and improved charge separation and transfer ability, thus resulting in a 3-fold photocurrent (1.98 mA cm(-2) at 0 V vs. Ag/AgCl) compared with that of pure TiO2 NTs (0.66 mA cm(-2) at 0 V vs. Ag/AgCl) in 1 M NaOH solution. The prepared P-C3N4/TiO2 NT photoelectrodes also present excellent photocatalytic and photoelectrocatalytic capabilities in the degradation of methylene blue (MB). The kinetic rate of P-C3N4/TiO2 NTs in the photoelectrocatalytic process for MB is 2.7 times that of pristine TiO2 NTs. Furthermore, the prepared sample was used as a photoanode for solar-driven water splitting, giving a H-2 evolution rate of 36.6 mu mol h(-1) cm(-2) at 1.0 V vs. RHE under simulated solar light illumination. This novel structure with a rational design for a visible light response shows potential for metal free materials in photoelectrochemical applications.

Pre One:Fabrication of alpha-Fe2O3/In2O3 composite hollow microspheres: A novel hybrid photocatalyst for toluene degradation under visible light

Next One:Ag对Cu-Ti-PILC结构和催化性能的影响