胡志强
503

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:水工结构工程

办公地点:大连理工大学建设工程学部综合试验4号楼401室

联系方式:办公电话:0411-84709552 Email: huzhq@dlut.edu.cn

电子邮箱:huzhq@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

弹塑性接触问题的非光滑非线性方程组方法

点击次数:

论文类型:期刊论文

发表时间:2022-06-30

发表刊物:计算力学学报

所属单位:建设工程学部

期号:6

页面范围:684-690

ISSN号:1007-4708

摘要:In the Nonsmooth Nonlinear Equations Method, the contact constraints are formulated as a set of nonsmooth nonlinear equations and satisfied accurately. The Nonsmooth Damped Newton method (NDN) is used to solve these equations with high computational efficiency. In this paper, the Nonsmooth Nonlinear Equations Method (NNEQM) is extended to the elasto-plastic case in which small strain, Von Mises yield criteria, isotropic hardening law and associated flow rule are considered. For three-dimensional static elastoplastic frictional contact problem (3D-SEPFCP), two kinds of subproblems are needed to be solved: one is the elastoplastic problem and the other is the contact problem. A method combining NNEQM with Newton-Raphson method is presented as NNEQM1. Moreover, the elastoplastic problem can be formulated as linear complementary problem or nonsmooth equations which are solved by the methods in Mathematical Programming. Therefore, all the contact constraints and yield criteria at the Gauss Points in elements are expressed as a unified set of nonlinear nonsmooth equations which can be solved by NDN. The method is also considered as another way to solve 3D-SEPFCP and denoted as NNEQM2. Numerical example is given to show that the validity of these two approaches and a comparison between them has been made. It is concluded that the two approaches are easily convergent, the first one is more efficient than the second one, and the results derived by NNEQM1 is more accurate.

备注:新增回溯数据