Hits:
Indexed by:期刊论文
Date of Publication:2017-11-10
Journal:NATURE COMMUNICATIONS
Included Journals:Scopus、SCIE、PubMed
Volume:8
Issue:1
Page Number:1407
ISSN No.:2041-1723
Abstract:Catalytic transformation of CO2 to formate is generally realized through bicarbonate hydrogenation in an alkaline environment, while it suffers from a thermodynamic sink due to the considerable thermodynamic stability of the bicarbonate intermediate. Here, we devise a route for the direct catalytic conversion of CO2 over a Schiff-base-modified gold nanocatalyst that is comparable to the fastest known nanocatalysts, with a turnover number (TON) of up to 14,470 over 12 h at 90 degrees C. Theoretical calculations and spectral analysis results demonstrate that the activation of CO2 can be achieved through a weakly bonded carbamate zwitterion intermediate derived from a simple Lewis base adduct of CO2. However, this can only occur with a hydrogen lacking Lewis base center in a polar solvent. This finding offers a promising avenue for the direct activation of CO2 and is likely to have considerable implications in the fields of CO2 conversion and gold catalytic chemistry.