个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:日本国立九州工业大学
学位:博士
所在单位:化工学院
学科:药剂学. 药物工程
办公地点:大连理工大学制药科学与技术学院 G202
联系方式:0411-84986176
电子邮箱:qwang@dlut.edu.cn
Studies on in vitro release performance of hydrophilic drugs and lipophilic drugs in amphiphilic SIS-based hot-melt pressure sensitive adhesives
点击次数:
论文类型:期刊论文
发表时间:2013-07-13
发表刊物:Applied Mechanics and Materials
收录刊物:EI、CPCI-S、Scopus
卷号:395-396
页面范围:389-398
ISSN号:9783037858424
关键字:pressure-sensitive; infrared spectra; adhesion; transdermal; drug release
摘要:In order to fabricate a kind of amphiphilic hot-melt pressure sensitive adhesives (HMPSAs) suitable for transdermal drug delivery systems (TDDS) of natural medicines, SIS-based hot-melt pressure sensitive adhesives were modified by a melt-blending method, in which a kind of hydrophilic poly (ethyl acrylate-co-methyl methacrylate-co-trimethylammonioethyl methacrylate chloride) (RLPO) and polyethylene glycol 2000 (PEG2000) were utilized. Functional RLPO and its plasticizer PEG2000 worked as a hydrophilic skeleton of amphiphilic HMPSAs. SEM and FT-IR results indicated that RLPO and SIS were partially compatible with each other through n-pi complex between the n electrons of the carbonyl group of RLPO and the it electrons of the benzene rings of SIS and their compound had a good thermal stability. The phase microscope images showed that PEG could improve the compatibility between RLPO phase and SIS phase. As the ratio of SIS/RLPO/PEG equaled to 1/2/1.6, their compounds obtained bi-continuous structures. Geniposide (logP<0) and oleanic acid (logP=9.0) were chosen as representatives of hydrophilic drugs and lipophilic drugs, respectively. It was observed that both hydrophilic drugs and lipophilic drugs had a continuous release in the optimized amphiphilic HMPSAs. In addition, the release behavior of hydrophilic geniposide could be controlled by adjusting the ratio of RLPO to PEG.