个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:香港中文大学
学位:博士
所在单位:化工学院
学科:有机化学
办公地点:大连理工大学西校区,E-308
电子邮箱:liujh@dlut.edu.cn
Oligo thiophene-2-yl-vinyl bridged mono- and binuclear ruthenium(II) tris-bipyridine complexes: Synthesis, photophysics, electrochemistry and electrogenerated chemiluminescence
点击次数:
论文类型:期刊论文
发表时间:2021-01-13
发表刊物:JOURNAL OF ORGANOMETALLIC CHEMISTRY
卷号:693
期号:1
页面范围:46-56
ISSN号:0022-328X
关键字:oligothiophene-yl-vinyl; polypyridine ligands; ruthenium tris-bipyridine; photophysics; electrochemistry and ECL
摘要:A series of mono- and binuclear ruthenium(II) tris-bipyridine complexes tethered to oligothienylenevinyleries have been synthesized and characterized by H-1 NMR, C-13 NMR and TOF-MS spectrometry. Photophysics, electrochemistry and electrogenerated chemiluminescence (ECL) properties of these complexes are investigated. The electronic absorption spectra of the mononuclear ruthenium complexes show a significant red shift both at MLCT (metal-to-ligand charge transfer) and pi-pi* transitions of oligothienylenevinylenes with increase in the number of thiophenyl-2-yl-vinyl unit. For the binuclear complexes these two absorption bands are overlapped.) All the metal complexes have very weak emission compared to that of the reference complex Ru(bpy)(3)(2+). The first reduction potentials of all mononuclear ruthenium complexes are less negative than that of Ru(bpy)(3)(2+), due to the moderate electron-withdrawing effect of oligothienylenevinylenes. For binuclear ruthenium complexes, only one Ru(II/III) oxidation peak (E-1/2=0.96V vs. Ag/Ag+) was observed, suggesting a weak interaction between two metal centers. Three successive reduction processes of bipyridine ligands are similar among all ruthenium complexes except for RuTRu, which has a very sharp peak owing to the accumulation of neutral product oil the electrode surface. All these ruthenium complexes exhibited different ECL property in CH3CN solution without any additional reductant or oxidant. For three mononuclear ruthenium complexes, the ECL intensity strengthens with increase in the number of thiophene-2-yl-vinyl unit. However, the ECL efficiency dramatically decreased in the binuclear ruthenium complexes. The ECL efficiencies of all the)2+, reported complexes do not exceed that of Ru(bpy 3 where the ECL efficiency decreases in the order of RuTRu > Ru3T > Ru2T > RuT > Ru2TRu (RuT, bis-2,2'-bipyridyl-(4-metliyl-4'-(2-thienylethenyl)-2,2'-bipyridine) ruthenium dihexafluorophosphate; Ru2T, bis-2,2'-bipyridyl-(4-methyl-4'-{(E) -2-[5-((E) -2-thienylethenyl)-thienylethenyl])-2,2'-bipyridine)ruthenium dihexafluorophosphate; Ru3T, bis-2,2'-bipyridyl-(4-methyl-4'-[(E)-2-{(E)-2-[5-((E)-2-thienylethenyl)-thienylethenyl])}-2,2'-bipyridine) ruthenium dihexafluorophosphate; RuTRu, bis-2,2'-bipyridyl-ruthenium-bis-[2-((E)-4'-methyl-2,2'-bipyridinyl-4)-ethenyl]-thienyl-bis-2,2'-bipyridyl-ruthenium tetrahexafluorophosphate; Ru2TRu, bis-2,2'-bipyridyl-ruthenium-(E)-1,2-bis-{2-[2-((E)-4'-methyl-2,2'-bipyridinyl-4)-ethenyl]-thienyl}ethenyl-bis-2,2'-bipyridyl-ruthenium tetrahexafluorophosphate). (c) 2007 Elsevier B.V. All rights reserved.