胡涛

个人信息Personal Information

教授

硕士生导师

主要任职:笃学书院执行院长

其他任职:无机化学教研室主任

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化学学院

学科:无机化学

办公地点:西部校区化工综合楼C403
主校区化学楼431

电子邮箱:inorchem@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

New Strategy for the Morphology-Controlled Synthesis of V2O5 Microcrystals with Enhanced Capacitance as Battery-type Supercapacitor Electrodes

点击次数:

论文类型:期刊论文

发表时间:2018-09-01

发表刊物:CRYSTAL GROWTH & DESIGN

收录刊物:SCIE

卷号:18

期号:9

页面范围:5365-5376

ISSN号:1528-7483

摘要:Porous vanadium pentoxide (V2O5) microcrystals with different morphologies were synthesized through the decomposition of butterfly-like, rhombohedral, and flower-like ammonium metavanadate (NH4VO3) microcrystals, which were synthesized by the drowning-out crystallization of hydrothermal NH4VO3 aqueous solution using ethanol as both the antisolvent and the template for the self-assembly of vanadate ions. The effects of reaction conditions on the morphologies of products were characterized by scanning electron microscopy (SEM), and the possible growth mechanism was proposed. The electrochemical properties of the produced porous V2O5 with different morphologies were studied as battery-type electrodes for supercapacitors using 1 M LiClO4/propylene carbonate (PC) as the electrolyte. Rhombohedral V2O5 exhibited the highest initial specific capacitance of 641 F.g(-1) at 0.5 A.g(-1) among the three obtained morphologies, as well as an excellent rate capability and cycling stability, with a retention of over 119% after 2000 cycles, making it a promising electrode material for supercapacitors. The influences of morphologies on the capacitance and cycle performance are analyzed. The results indicate that the increasing complexity of the structure leads to lower specific capacitance because of the higher degree of electrode polarization and higher resistance, while the structure stability of the microcrystals is related to the rate capability as well as the cycling performance.