个人信息Personal Information
教授
硕士生导师
主要任职:笃学书院执行院长
其他任职:无机化学教研室主任
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化学学院
学科:无机化学
办公地点:西部校区化工综合楼C403
主校区化学楼431
电子邮箱:inorchem@dlut.edu.cn
Fabrication of V2O5 with various morphologies for high-performance electrochemical capacitor
点击次数:
论文类型:期刊论文
发表时间:2016-07-30
发表刊物:APPLIED SURFACE SCIENCE
收录刊物:SCIE、EI、Scopus
卷号:377
页面范围:385-393
ISSN号:0169-4332
关键字:V2O5 structures; Supercapacitor; Electrochemical performance; Hydrothermal synthesis
摘要:Three types of V2O5 structures including nanobelts, nanoparticles and microspheres were synthesized by a simple hydrothermal route and combination of calcination. The morphology of the sample depends on the quantity of oxalic acid used in the experiments. V2O5 nanobelts, nanoparticles and microspheres were respectively obtained when 0.63, 1.89 and 3.78 g of oxalic acid were used. The composition, morphology and structure of the samples were characterized by XRD, IR, SEM and TEM, respectively. The electrochemical properties of V2O5 nanobelts, nanoparticles and microspheres as electrodes in a supercapacitor device were measured using cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD). The electrochemical results indicate that V2O5 microspheres lead to a significant improvement of storage capacity and they show the largest specific capacitance of 308 F g(-1) when used as supercapacitor electrode in 1 mol L-1 LiNO3 electrolyte. It turns out that V2O5 microsphere is an ideal material compared with other morphologies for supercapacitor electrode in the present work. (C) 2016 Elsevier B.V. All rights reserved.