个人信息Personal Information
副教授
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化学学院
学科:无机化学. 环境科学
电子邮箱:zhoupeng@dlut.edu.cn
Electrosynthesis of acetate from inorganic carbon (HCO3-) with simultaneous hydrogen production and Cd(II) removal in multifunctional microbial electrosynthesis systems (MES)
点击次数:
论文类型:期刊论文
发表时间:2019-06-05
发表刊物:JOURNAL OF HAZARDOUS MATERIALS
收录刊物:SCIE、PubMed、EI
卷号:371
页面范围:463-473
ISSN号:0304-3894
关键字:Microbial electrosynthesis system; Extracellular polymer substance; Acetate production; Cd(II) removal; Hydrogen production
摘要:The simultaneous production of acetate from bicarbonate (from CO2 sequestration) and hydrogen gas, with concomitant removal of Cd(II) heavy metal in water is demonstrated in multifunctional metallurgical microbial electrosynthesis systems (MES) incorporating Cd(II) tolerant electrochemically active bacteria (EAB) (Ochmbactrum sp. X1, Pseudomonas sp. X3, Pseudomonas deihiensis X5, and Ochrobactrum aruhropi X7). Strain X5 favored the production of acetate, while X7 preferred the production of hydrogen. The rate of Cd(II) removal by all EAB (1.20-1.32 mg/L/h), and the rates of acetate production by X5 (29.4 mg/L/d) and hydrogen evolution by X7 (0.0187 m(3)/m(3)/d) increased in the presence of a circuital current. The production of acetate and hydrogen was regulated by the release of extracellular polymeric substances (EPS), which also exhibited invariable catalytic activity toward the reduction of Cd(II) to Cd(0). The intracellular activities of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and dehydrogenase were altered by the circuital current and Cd(II) concentration, and these regulated the products distribution. Such understanding enables the targeted manipulation of the IVIES operational conditions that favor the production of acetate from CO2 sequestration with simultaneous hydrogen production and removal/recovery of Cd(II) from metal-contaminated and organics-barren waters.
上一条:Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems
下一条:Response of indigenous Cd-tolerant electrochemically active bacteria in MECs toward exotic Cr(VI) based on the sensing of fluorescence probes