location: Current position: Home >> Scientific Research >> Paper Publications

An importance propagation framework for static ranking of web pages

Hits:

Indexed by:期刊论文

Date of Publication:2008-12-01

Journal:Journal of Computational Information Systems

Included Journals:EI、Scopus

Volume:4

Issue:6

Page Number:2499-2507

ISSN No.:15539105

Abstract:Web page ranking plays an important role in modern web information retrieval systems. The key to page ranking is page importance propagation. Google's PageRank adopts a simple method for page importance propagation, in which the importance of each page is propagated only to its direct neighbors through hyperlinks. In this paper, we propose a general framework for importance propagation. Under this framework, every page that is on a directed path to a targeting page has an impact on the importance of the targeting page, and the impact decays with distance following a negative exponent model. PageRank is a special instance of this framework with a propagation distance of 1. By tuning the propagation distance parameter in this framework, the importance of web pages can be propagated more accurately and faster. Experimental results show that, when the propagation distance is 3, the query precision is increased up to 70% and the iterative times are decreased by 78%, compared with PageRank. © 2008 Binary Information Press.

Pre One:An improved random walk algorithm based on correlation coefficient to find scientific communities

Next One:一种改进的社区发现最大流算法