乔显亮

个人信息Personal Information

副教授

博士生导师

硕士生导师

任职 : 环境生态与工程研究生导师纵向党支部书记

性别:男

毕业院校:中科院南京土壤所

学位:博士

所在单位:环境学院

学科:环境科学

办公地点:环境楼B409

联系方式:办公电话:84707189 手机:13610848936

电子邮箱:xlqiao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Remediation of cadmium contaminated water and soil using vinegar residue biochar

点击次数:

论文类型:期刊论文

发表时间:2018-06-01

发表刊物:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH

收录刊物:PubMed、SCIE

卷号:25

期号:16

页面范围:15754-15764

ISSN号:0944-1344

关键字:Vinegar residue; Biochar; Cadmium pollution; Remediation; Water; Soil

摘要:This study investigated a new biochar produced from vinegar residue that could be used to remediate cadmium (Cd)-contaminated water and soil. Aqueous solution adsorption and soil incubation experiments were performed to investigate whether a biochar prepared at 700 degrees C from vinegar residue could efficiently adsorb and/or stabilize Cd in water and soil. In the aqueous solution adsorption experiment, the Cd adsorption process was best fitted by the pseudo-second-order kinetic and Freundlich isotherm models. If the optimum parameters were used, i.e., pH 5 or higher, a biochar dosage of 12 g L-1, a 10 mg L-1 Cd initial concentration, and 15-min equilibrium time, at 25 degrees C, then Cd removal could reach about 100%. The soil incubation experiment evaluated the biochar effects at four different application rates (1, 2, 5, and 10% w/w) and three Cd contamination rates (0.5, 1, and 2.5 mg kg(-1)) on soil properties and Cd fractionation. Soil pH and organic matter increased after adding biochar, especially at the 10% application rate. At Cd pollution levels of 1.0 or 2.5 mg kg(-1), a 10% biochar application rate was most effective. At 0.5 mg Cd kg(-1) soil, a 5% biochar application rate was most efficient at transforming the acid extractable and easily reducible Cd fractions to oxidizable and residual Cd. The results from this study demonstrated that biochar made from vinegar residue could be a new and promising alternative biomass-derived material for Cd remediation in water and soil.