个人信息Personal Information
副教授
硕士生导师
性别:女
毕业院校:大连理工大学
学位:硕士
所在单位:生物工程学院
电子邮箱:ljchen@dlut.edu.cn
Parameter oscillations in a very high gravity medium continuous ethanol fermentation and their attenuation on a multistage packed column bioreactor system
点击次数:
论文类型:期刊论文
发表时间:2004-12-05
发表刊物:BIOTECHNOLOGY AND BIOENGINEERING
收录刊物:Scopus、SCIE、EI
卷号:88
期号:5
页面范围:558-566
ISSN号:0006-3592
关键字:quasi-steady states; oscillations; very high gravity; ethanol fermentation; Saccharomyces cerevisiae
摘要:The quasi-steady-states, marked by small fluctuations of residual glucose, ethanol, and biomass concentrations, and sustainable oscillations marked by big fluctuations of these monitored fermentation parameters were observed during the continuous ethanol fermentation of Saccharomyces cerevisiae when very high gravity media were fed and correspondingly high ethanol concentrations reached. A high ethanol concentration was shown to be one of the main factors that incited these oscillations, although the residual glucose level affected the patterns of these oscillations to some extent. The lag response of S. cerevisiae to high ethanol stress that causes the shifts of morphology, viability loss, and death of yeast cells is assumed to be one of the probable mechanisms behind these oscillations. It was predicted that the longer the delay of this response was, the longer the oscillation periods would be, which was validated by the experimental data and the comparison with the oscillatory behaviors reported for the ethanologen bacterium, Zymomonas mobilis. Furthermore, three tubular bioreactors in series were arranged to follow a stirred tank bioreactor to attenuate these oscillations. However, exaggerated oscillations were observed for the residual glucose, ethanol, and biomass concentrations measured in the broth from these tubular bioreactors. After the tubular reactors were packed with Intalox ceramic saddle packing, these oscillations were effectively attenuated and quasi-steady-states were observed during which there were very small fluctuations of residual glucose, ethanol, and biomass within the entire experimental run. (C) 2004 Wiley Periodicals, Inc.