赵宗彬

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中科院山西煤化所

学位:博士

所在单位:化工学院

学科:功能材料化学与化工. 物理化学

办公地点:大连理工大学 西校区化工综合楼A212

联系方式:zbzhao@dlut.edu.cn

电子邮箱:zbzhao@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Nitrogen-doped carbon nanotubes decorated with cobalt nanoparticles derived from zeolitic imidazolate framework-67 for highly efficient oxygen reduction reaction electrocatalysis

点击次数:

论文类型:期刊论文

发表时间:2018-06-01

发表刊物:CARBON

收录刊物:SCIE、EI

卷号:132

页面范围:580-588

ISSN号:0008-6223

摘要:Nitrogen-doped carbon nanotubes decorated with carbon-coated cobalt nanoparticles (Co@C-NCNTs) are constructed from the zeolitic imidazolate framework ZIF-67. Electrostatic force-induced preadsorption of coordination center ions on the surface of halloysite nanotubes leads to confined nucleation and in situ growth of a thin layer of ZIF-67. Subsequent carbonization and template removal give rise to NCNTs with open end and large inner cavity, thin wall moderate graphitization, and decoration with carbon-coated Co nanoparticles. The synthetic strategy can be easily extended to the preparation of various NCNTs with tunable graphitization and metal decoration from different ZIFs. Benefited from one-dimensional nanotubes with more exposed active surface area and convenient channels for the transport of electrons and reactants, the resulting Co@C-NCNTs exhibit enhanced catalytic performance in oxygen reduction reaction with an onset potential of -0.1 V vs Ag/AgCl, high current density (-4.42 mA/cm(2) at -0.6 V), and approximate 4e(-) transfer process in O-2-saturated 0.1 M KOH. The Co@C-NCNTs have higher durability and remarkable methanol tolerance capability both in alkaline and acidic solutions superior to the commercial Pt/C. The present strategy for structure-control electrocatalysts creates a new pathway for the fabrication of promising cathode catalyst for fuel cell applications. (c) 2018 Elsevier Ltd. All rights reserved.