location: Current position: Home >> Scientific Research >> Paper Publications

Various air distribution modes on commercial airplanes-Part 2: Computational fluid dynamics modeling and validation

Hits:

Indexed by:期刊论文

Date of Publication:2013-07-04

Journal:HVAC&R RESEARCH

Included Journals:SCIE、EI、Scopus

Volume:19

Issue:5

Page Number:457-470

ISSN No.:1078-9669

Abstract:Both experimental test and numerical modeling can be used to investigate air distribution on commercial airplanes. Numerical modeling by computational fluid dynamics has gained popularity; however, current computational fluid dynamics modeling efforts are concentrated primarily on the mixing-air distribution mode. To fully evaluate computational fluid dynamics modeling for different air distribution modes, the flow, heat transfer, and pollutant species transport in a twin-aisle aircraft cabin mockup is modeled. Three air distribution modes, namely the mixing, under-aisle displacement, and personal air distribution modes, are studied. The steady renormalization group k-E model together with the standard wall function has been employed for turbulence modeling and the near-wall treatment. The experimental data in terms of the velocity field, temperature, and CO2 concentration profiles are applied to validate the numerical models. This study finds that the renormalization group k-E model is able to solve major air distribution parameters in reasonable agreement with the measured values. When carrying out the steady computational modeling by resolving the Reynolds-averaged Navier-Stokes equations, it should be noted that the models may underestimate the turbulent mixing effect.

Pre One:A two-step model to inversely identify a temporarily released pollutant source with two sensors

Next One:呼吸墙过滤效率的数值模拟分析