![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:广岛大学
学位:博士
所在单位:船舶工程学院
学科:船舶与海洋结构物设计制造. 水声工程. 计算力学
办公地点:A1区21号,船池317
联系方式:zongzhi@dlut.edu.cn
电子邮箱:zongzhi@dlut.edu.cn
A NUMERICAL INVESTIGATION INTO THE IMPACT PRESSURES OF DIFFERENT BASE FORMS USING SPH METHOD
点击次数:
论文类型:会议论文
发表时间:2014-06-08
收录刊物:EI、CPCI-S、Scopus
卷号:2
摘要:In this paper, the impact pressures of two different base forms are comparatively studied using Smoothed Particle Hydrodynamics (SPH) method. It is summarized from previous works that the improved weakly compressible SPH model shows better performances than incompressible SPH model in numerical simulations of free surface flows accompany with large deformations and strong discontinuities. Such advantages are observed in numerical accuracy, stability and efficiency. The weakly compressible SPH model used in this paper is equipped with some new correction algorithms, among which include the density reinitialization algorithm and a new coupled dynamic Solid Boundary Treatment (SBT) on solid boundaries. The new boundary treatment combines the advantages of both the repulsive boundary treatment and the dynamic boundary treatment, intending to obtain more stable and accurate numerical results. A benchmark test of dam breaking is conducted to prove the reliability of the numerical model used in this paper. Two representative cases, among which one has one cavity and the other one has three cavities, are numerically investigated and compared to support the conclusion that the base form with cavities generally experience lower local and overall impact pressures than the base form of flat plate. It is found that with the application of cavities on the bottom, the peak values of the boundary pressure near central bottom significantly decrease, leading to smaller force load and better structural stability. The mechanisms of such phenomenon might be the pressure absorption effect conducted by the cavities.