![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:广岛大学
学位:博士
所在单位:船舶工程学院
学科:船舶与海洋结构物设计制造. 水声工程. 计算力学
办公地点:A1区21号,船池317
联系方式:zongzhi@dlut.edu.cn
电子邮箱:zongzhi@dlut.edu.cn
The effect of rigid-body motions on the whipping response of a ship hull subjected to an underwater bubble
点击次数:
论文类型:期刊论文
发表时间:2011-11-01
发表刊物:JOURNAL OF FLUIDS AND STRUCTURES
收录刊物:Scopus、SCIE、EI
卷号:27
期号:8
页面范围:1326-1336
ISSN号:0889-9746
关键字:Underwater explosion; Bubble; Rigid-body motion; Hull girder; Whipping
摘要:The dynamic elastic response of a floating ship hull girder to an underwater explosion bubble is normally composed of two parts: rigid-body motion and elastic deformation. However, the effects of rigid-body motion have consistently been neglected in the current literature based on the assumption that they are small. In this paper, our focus is on the study of rigid-body motion effects on the hull girder's elastic deformation, also known as the 'whipping response'. A theory of interaction between a gas bubble and a hull girder is presented. The bubble dynamic equations combined with the bubble migration, free surface effect and drag force considerations are solved numerically using the Runge-Kutta method. The rigid-body and elastic responses of the hull that are induced by the impulsive pressure of a bubble are calculated using the methods presented herein. Two different examples of real ships are given to demonstrate the effect of rigid-body motion on whipping responses. The numerical results show that rigid-body motions reduce the amplitudes and vibration natural periods of the bending moments of the hull girder. These effects can be ignored for slender hulls, but must be taken into consideration for shorter/wider hulls so as not to underestimate the longitudinal strength. (C) 2011 Elsevier Ltd. All rights reserved.