location: Current position: Home >> Scientific Research >> Paper Publications

Rolling Bearing Reliability Assessment via Kernel Principal Component Analysis and Weibull Proportional Hazard Model

Hits:

Indexed by:期刊论文

Date of Publication:2017-01-01

Journal:SHOCK AND VIBRATION

Included Journals:SCIE、EI

Volume:2017

ISSN No.:1070-9622

Abstract:Reliability assessment is a critical consideration in equipment engineering project. Successful reliability assessment, which is dependent on selecting features that accurately reflect performance degradation as the inputs of the assessment model, allows for the proactive maintenance of equipment. In this paper, a novel method based on kernel principal component analysis (KPCA) and Weibull proportional hazards model (WPHM) is proposed to assess the reliability of rolling bearings. A high relative feature set is constructed by selecting the effective features through extracting the time domain, frequency domain, and time-frequency domain features over the bearing's life cycle data. The kernel principal components which can accurately reflect the performance degradation process are obtained by KPCA and then input as the covariates of WPHM to assess the reliability. An example was conducted to validate the proposed method. The differences in manufacturing, installation, and working conditions of the same type of bearings during reliability assessment are reduced after extracting relative features, which enhances the practicability and stability of the proposed method.

Pre One:基于双重比较的差异化准备金率政策效果研究

Next One:A nonlinear interval portfolio selection model and its application in banks