个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Director of Institute of Systems Engineering
其他任职:大连市数据科学与知识管理重点实验室主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:系统工程研究所
学科:管理科学与工程. 系统工程
办公地点:经济管理学院D337室
联系方式:0411-84708007
电子邮箱:dlutguo@dlut.edu.cn
Big Data Analytics in Healthcare: Data-Driven Methods for Typical Treatment Pattern Mining
点击次数:
论文类型:期刊论文
发表时间:2019-12-01
发表刊物:JOURNAL OF SYSTEMS SCIENCE AND SYSTEMS ENGINEERING
收录刊物:EI、SCIE
卷号:28
期号:6
页面范围:694-714
ISSN号:1004-3756
关键字:Big data analytics; healthcare; electronic medical records; typical treatment pattern
摘要:A huge volume of digitized clinical data is generated and accumulated rapidly since the widespread adoption of Electronic Medical Records (EMRs). These big data in healthcare hold the promise of propelling healthcare evolving from a proficiency-based art to a data-driven science, from a reactive mode to a proactive mode, from one-size-fits-all medicine to personalized medicine. This paper first discusses the research background - big data analytics in healthcare, the research framework of big data analytics in healthcare, analysis of medical process, and the literature summary of treatment pattern mining. Then the challenges for data-driven typical treatment pattern mining are highlighted, including similarity measure between treatment records, typical treatment pattern extraction, evaluation and recommendation, when considering the rich temporal and heterogeneous medical information in EMRs. Furthermore, three categories of typical treatment patterns are mined from doctor order content, duration, and sequence view respectively, which can provide a data-driven guideline to achieve the "5R" goal for rational drug use and clinical pathways.