![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Director of Academic Committee at Kaifa District
其他任职:开发区校区学术分委员会主任(Director of Academic Committee at Kaifa Campus)
性别:男
毕业院校:多伦多大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 运筹学与控制论
办公地点:开发区(Kaifa District Campus)
联系方式:mingchul@dlut.edu.cn
电子邮箱:mingchul@dlut.edu.cn
[r, s, t]-colorings of fans
点击次数:
论文类型:期刊论文
发表时间:2015-01-01
发表刊物:ARS COMBINATORIA
收录刊物:SCIE、Scopus
卷号:119
页面范围:263-273
ISSN号:0381-7032
关键字:[r, s, t]-coloring; [r, s, t]-chromatic number; wheels; friendship graphs; fans
摘要:Given non-negative integers r, s and t, an [r, s, t]-coloring of a graph G = (V (G), E (G)) is a function c from V (G) boolean OR E(G) to the color set {0,1, ..., k - 1} such that vertical bar c(v(z)) - c(v(j))vertical bar >= r for every two adjacent vertices v(i), v(j), vertical bar c(e(i)) - c(e(j))vertical bar >= s for every two adjacent edges e(i), e(j), and vertical bar c(v(i)) - c(e(j))vertical bar >= t for all pairs of incident vertices v(z) and edges e(j). The [r, s, t]-chromatic number (Xr,s,t)(G) is the minimum k such that G admits an [r, s, t]-coloring. In this paper, we examine [r, s, t]-chromatic numbers of fans for every positive integer r, s and t.