李明楚

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Director of Academic Committee at Kaifa District

其他任职:开发区校区学术分委员会主任(Director of Academic Committee at Kaifa Campus)

性别:男

毕业院校:多伦多大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 运筹学与控制论

办公地点:开发区(Kaifa District Campus)

联系方式:mingchul@dlut.edu.cn

电子邮箱:mingchul@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

[r, s, t]-colorings of fans

点击次数:

论文类型:期刊论文

发表时间:2015-01-01

发表刊物:ARS COMBINATORIA

收录刊物:SCIE、Scopus

卷号:119

页面范围:263-273

ISSN号:0381-7032

关键字:[r, s, t]-coloring; [r, s, t]-chromatic number; wheels; friendship graphs; fans

摘要:Given non-negative integers r, s and t, an [r, s, t]-coloring of a graph G = (V (G), E (G)) is a function c from V (G) boolean OR E(G) to the color set {0,1, ..., k - 1} such that vertical bar c(v(z)) - c(v(j))vertical bar >= r for every two adjacent vertices v(i), v(j), vertical bar c(e(i)) - c(e(j))vertical bar >= s for every two adjacent edges e(i), e(j), and vertical bar c(v(i)) - c(e(j))vertical bar >= t for all pairs of incident vertices v(z) and edges e(j). The [r, s, t]-chromatic number (Xr,s,t)(G) is the minimum k such that G admits an [r, s, t]-coloring. In this paper, we examine [r, s, t]-chromatic numbers of fans for every positive integer r, s and t.