![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Director of Academic Committee at Kaifa District
其他任职:开发区校区学术分委员会主任(Director of Academic Committee at Kaifa Campus)
性别:男
毕业院校:多伦多大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 运筹学与控制论
办公地点:开发区(Kaifa District Campus)
联系方式:mingchul@dlut.edu.cn
电子邮箱:mingchul@dlut.edu.cn
Supereulerian index is stable under contractions and closures
点击次数:
论文类型:期刊论文
发表时间:2010-10-01
发表刊物:ARS COMBINATORIA
收录刊物:SCIE、Scopus
卷号:97
页面范围:129-142
ISSN号:0381-7032
关键字:supereulerian index; stable property; closure of a graph; contractible graph; collapsible graph; claw-free graph
摘要:The supereulerian index of a graph G is the smallest integer k such that the k-th iterated line graph of G is supereulerian. We first show that adding an edge between two vertices with degree sums at least three in a graph cannot increase its supereulerian index. We use this result to prove that the supereulerian index of a graph G will not be changed after either of contracting an A(G)(F)-contractible subgraph F of a graph G and performing the closure operation on G (if G is claw-free). Our results extend a Catlin's remarkable theorem [4] relating that the supereulericity of a graph is stable under the contraction of a collapsible subgraph.