李明楚

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Director of Academic Committee at Kaifa District

其他任职:开发区校区学术分委员会主任(Director of Academic Committee at Kaifa Campus)

性别:男

毕业院校:多伦多大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 运筹学与控制论

办公地点:开发区(Kaifa District Campus)

联系方式:mingchul@dlut.edu.cn

电子邮箱:mingchul@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Supereulerian index is stable under contractions and closures

点击次数:

论文类型:期刊论文

发表时间:2010-10-01

发表刊物:ARS COMBINATORIA

收录刊物:SCIE、Scopus

卷号:97

页面范围:129-142

ISSN号:0381-7032

关键字:supereulerian index; stable property; closure of a graph; contractible graph; collapsible graph; claw-free graph

摘要:The supereulerian index of a graph G is the smallest integer k such that the k-th iterated line graph of G is supereulerian. We first show that adding an edge between two vertices with degree sums at least three in a graph cannot increase its supereulerian index. We use this result to prove that the supereulerian index of a graph G will not be changed after either of contracting an A(G)(F)-contractible subgraph F of a graph G and performing the closure operation on G (if G is claw-free). Our results extend a Catlin's remarkable theorem [4] relating that the supereulericity of a graph is stable under the contraction of a collapsible subgraph.