个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Director of Academic Committee at Kaifa District
其他任职:开发区校区学术分委员会主任(Director of Academic Committee at Kaifa Campus)
性别:男
毕业院校:多伦多大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 运筹学与控制论
办公地点:开发区(Kaifa District Campus)
联系方式:mingchul@dlut.edu.cn
电子邮箱:mingchul@dlut.edu.cn
Radius and subpancyclicity in line graphs
点击次数:
论文类型:期刊论文
发表时间:2008-12-06
发表刊物:DISCRETE MATHEMATICS
收录刊物:SCIE、EI、Scopus
卷号:308
期号:23
页面范围:5325-5333
ISSN号:0012-365X
关键字:Line graphs; (sub)pancyclic graph; Radius; Maximum degree; Diameter
摘要:A graph is called subpancyclic if it contains cycles of length frorn 3 to its circumference. Let G be a graph with min{d(u)+d(v) : uv is an element of E(G)} >= 8. In this paper, we prove that if one of the following holds: the radius of G is at most left perpendicular Delta(G)/2right perpendicualr; G has no subgraph isomorphic to Y Delta(G)+2; the circumference of G is at most Delta(G) + 1; the length of a longest path is at most Delta(G) + 1, then the line graph L(G) is subpancyclic and these conditions are all best possible even under the condition that L(G) is hamiltonian. (C) 2007 Elsevier B.V. All rights reserved.