李明楚

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:Director of Academic Committee at Kaifa District

其他任职:开发区校区学术分委员会主任(Director of Academic Committee at Kaifa Campus)

性别:男

毕业院校:多伦多大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 运筹学与控制论

办公地点:开发区(Kaifa District Campus)

联系方式:mingchul@dlut.edu.cn

电子邮箱:mingchul@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Radius and subpancyclicity in line graphs

点击次数:

论文类型:期刊论文

发表时间:2008-12-06

发表刊物:DISCRETE MATHEMATICS

收录刊物:SCIE、EI、Scopus

卷号:308

期号:23

页面范围:5325-5333

ISSN号:0012-365X

关键字:Line graphs; (sub)pancyclic graph; Radius; Maximum degree; Diameter

摘要:A graph is called subpancyclic if it contains cycles of length frorn 3 to its circumference. Let G be a graph with min{d(u)+d(v) : uv is an element of E(G)} >= 8. In this paper, we prove that if one of the following holds: the radius of G is at most left perpendicular Delta(G)/2right perpendicualr; G has no subgraph isomorphic to Y Delta(G)+2; the circumference of G is at most Delta(G) + 1; the length of a longest path is at most Delta(G) + 1, then the line graph L(G) is subpancyclic and these conditions are all best possible even under the condition that L(G) is hamiltonian. (C) 2007 Elsevier B.V. All rights reserved.