Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Yongchen Song

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Business Address:能动大楼810
Contact Information:songyc@dlut.edu.cn
E-Mail:songyc@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

MRI study on CO2 capillary trap and drainage behavior in sandstone cores under geological storage temperature and pressure

Hits : Praise

Indexed by:期刊论文

Date of Publication:2018-04-01

Journal:INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

Included Journals:SCIE、EI

Volume:119

Page Number:678-687

ISSN No.:0017-9310

Key Words:CO2 geological storage; Capillary pressure; Sandstone cores; Relative permeability; Irreducible saturation; Magnetic resonance imaging

Abstract:Capillary pressure is an important parameter to characterize the core properties in CO2 geological storage applications, and it is necessary to study the CO2 drainage behavior to predict the potential and ensure the safety of storage. In this work, we conducted CO2 drainage experiments in two types of sandstone cores (Berea sandstone and synthetic sandstone) under reservoir conditions (800 m underground) and measured the capillary pressure using an MRI system. The drainage experiments were repeated in a capillary number range from 5.22 x 10(-9) to 5.5 x 10(-7) by varying the injection rate. The entry pressure and pore size distribution index were calculated by fitting a straight line on a log-log curve of the effective saturation versus capillary pressure. Relative permeability curves were plotted using the calculated entry pressure and pore size distribution index. The curves were consistent with the properties of the sandstone cores. The capillary desaturation curves gave the irreducible brine saturations for different permeability, wettability, injection pressure and injection direction conditions as a function of capillary number. (C) 2017 Elsevier Ltd. All rights reserved.