Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Yongchen Song

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Business Address:能动大楼810
Contact Information:songyc@dlut.edu.cn
E-Mail:songyc@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Dual-film optofluidic microreactor with enhanced light-harvesting for photocatalytic applications

Hits : Praise

Indexed by:期刊论文

Date of Publication:2018-05-01

Journal:CHEMICAL ENGINEERING JOURNAL

Included Journals:SCIE、EI

Volume:339

Page Number:71-77

ISSN No.:1385-8947

Key Words:Optofluidic microreactor; Dual-film structure; Light-harvesting; TiO2 nanorod arrays; Wastewater treatment

Abstract:Optofluidic microreactors are promising platform for photocatalytic reactions. However, the light transmission phenomenon is serious in optofluidic microreactors which makes a part of solar energy lose in surroundings. To resolve this problem, in this work, a novel dual-film optofluidic microreactor is proposed and fabricated by immobilizing TiO2 nanorod arrays on both the top and bottom internal wall of the microchamber. Such dual-film structure enables the transmitted light to be utilized by the bottom TiO2 film instead of being wasted, thus improving the light-harvesting capacity of optofluidic microreactor. Moreover, TiO2 nanorod arrays are employed as the photocatalytic film in this optofluidic microreactor to enlarge the specific surface area and facilitate the mass transfer. The photocatalytic performance and the kinetic properties of the dual-film optofluidic microreactor are evaluated by photocatalytic degradation of methylene blue. Results show that the proposed dual-film optofluidic microreactor yielded much higher degradation efficiency than the conventional one as a result of enhanced light-harvesting and improved mass transfer. In addition, the long-term testing proves that the durability of the dual-film optofluidic microreactor can be improved by operating it in a periodically rotated manner. In short, the TiO2 nanorod arrays-based dual-film optofluidic microreactor exhibits efficient light-harvesting and high durability and shows promising potential for photocatalytic applications.