Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Open time:..
The Last Update Time:..
Effects of cyclopentane on CO2 hydrate formation and dissociation as a co-guest molecule for desalination
Indexed by:期刊论文
Date of Publication:2017-01-01
Journal:JOURNAL OF CHEMICAL THERMODYNAMICS
Included Journals:SCIE、EI
Volume:104
Page Number:9-15
ISSN No.:0021-9614
Key Words:CO2 hydrate; Cyclopentane; Desalination; Thermodynamic
Abstract:Cyclopentane (CP) is considered to be a potential co-guest molecule in carbon dioxide (CO2) hydrate-based desalination. The experimental thermodynamic data of CO2-CP hydrates were measured for a salt solution, where CP was chosen as a hydrate promoter. Seven experimental cases (62 cycles) were studied with different molar ratios of CP/water (0, 0.0025, 0.005, 0.0075, 0.01, 0.02, and 0.03). Hydrate phase equilibrium data were generated using an isochoric method, and the hydrate saturations were calculated based on gas uptake. The results indicated that the increase in CP concentration significantly decreased the CO2 hydrate equilibrium pressure to a certain limit; the hydrate saturation also decreased during this process. Also, it was determined that CP encouraged the formation of s-II double CO2-CP hydrates, which are different from s-I simple CO2 hydrate. The CO2-CP guest provides a strengthened stability and moderate hydrate phase equilibrium conditions for hydrate-based desalination. The recommended optimal molar ratio of CP is 0.01 when the increase in equilibrium was more than 10 K, and the decrease in hydrate saturation was less than 2%. (C) 2016 Elsevier Ltd.