Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Yongchen Song

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Business Address:能动大楼810
Contact Information:songyc@dlut.edu.cn
E-Mail:songyc@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Pore-scale contact angle measurements of CO2-brine-glass beads system using micro-focused X-ray computed tomography

Hits : Praise

Indexed by:期刊论文

Date of Publication:2016-09-01

Journal:MICRO & NANO LETTERS

Included Journals:SCIE、EI、Scopus

Volume:11

Issue:9

Page Number:524-527

ISSN No.:1750-0443

Key Words:carbon compounds; glass; porous materials; X-ray microscopy; computerised tomography; contact angle; surface roughness; capillarity; microfocused X-ray computed tomography; porous media; drainage experiment; imbibition experiment; sessile drop methodology; contact angle hysteresis; intermediate-wet glass beads; surface roughness; capillary; rock cores; single-phase material; pore-scale contact angle; CO2-brine-glass beads system; temperature 40 degC; pressure 8 MPa; CO2

Abstract:Conventional methods for measuring contact angle are usually applied on smooth surfaces. Methods concerning contact angle determinations performed directly on pore surfaces of porous media have rarely been reported. This work approaches the pore-scale measurement of local contact angle in a CO2-brine-glass beads system, using micro-focused X-ray computed tomography (micro-CT). Both drainage and imbibition experiments with 0.1 ml/min injection rate were conducted at 40 degrees C and 8 MPa. The effectiveness of this pore-scale approach is confirmed by comparing the results with the results gathered from traditional sessile drop methodology. Observations indicate that the contact angle hysteresis phenomenon was not so obvious for intermediate-wet glass beads in the employed experimental setting. In real reservoir circumstances, the roughness and capillary variation caused significant deviations in contact angle distribution for both drainage and imbibition, even in rock cores consisting of a single-phase material.