Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Yongchen Song

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Business Address:能动大楼810
Contact Information:songyc@dlut.edu.cn
E-Mail:songyc@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Promotion of hydrate-based CO2 capture from flue gas by additive mixtures (THF (tetrahydrofuran) plus TBAB (tetra-n-butyl ammonium bromide))

Hits : Praise

Indexed by:期刊论文

Date of Publication:2016-07-01

Journal:ENERGY

Included Journals:EI、SCIE

Volume:106

Page Number:546-553

ISSN No.:0360-5442

Key Words:CO2 capture; Hydrate-based technology; Hydrate phase equilibrium; Gas separation

Abstract:HBGS (Hydrate-based gas separation) is a potential method for CO2 capture from fossil fuel power plants. High hydrate formation rates and low energy consumption are still the demands for industrial application of HBGS. The promotion effects of three additive mixtures (THF (tetrahydrofuran) + TBAB (tetra-n-butyl ammonium bromide)) on flue gas (CO2/N-2) hydrate phase equilibrium and CO2 capture characteristics were experimentally investigated in this study. It was found that hydrate phase equilibrium pressure for the 5% THF + 5% TBAB mixture was almost the same as that for the 5% THF + 10% TBAB mixture. Both the gas consumption and CO2 recovery increased substantially with increases in the mass fractions of THF or/and TBAB. The experimental results also showed that the gas consumption increases with the enhancement of initial pressure. Considering the hydrate phase equilibrium conditions and gas separation efficiency, an additive mixture with a mass fraction of 5% THF + 10% TBAB was found to be a better choice for hydrate-based CO2 capture from flue gas relative to other additive mixtures investigated in this study. (C) 2016 Elsevier Ltd. All rights reserved.