Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Yongchen Song

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Business Address:能动大楼810
Contact Information:songyc@dlut.edu.cn
E-Mail:songyc@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Enhanced hydrogen production by sorption-enhanced steam reforming from glycerol with in-situ CO2 removal in a fixed-bed reactor

Hits : Praise

Indexed by:期刊论文

Date of Publication:2016-02-15

Journal:FUEL

Included Journals:EI、ESI高被引论文、SCIE

Volume:166

Issue:166

Page Number:340-346

ISSN No.:0016-2361

Key Words:Glycerol; Sorption-enhanced steam reforming process (SERP); Ni-based catalyst; CaO based sorbent

Abstract:For the fixed-bed reactor configuration in the sorption-enhanced steam reforming process (SERP), solid mixture of catalyst and sorbent is stationary and alternatively exposed to reaction and regeneration conditions for multi-cycles by periodically switching the feed gases for enhanced hydrogen production with in-situ CO2 removal. A NiO/NiAl2O4 catalyst was synthesized by the co-precipitation method with rising pH technique and the crystalline spinel phase of NiAl2O4 was formed under the calcination temperature of 900 degrees C. The catalyst was characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), thermo-gravimetric analysis (TGA), and N-2 adsorption-desorption. The non-stoichiometric thermodynamic calculation was carried out to determine the effects of temperature and in-situ CO2 removal on the enhancement of hydrogen production by SERP from glycerol at 425-700 degrees C. The multi-cycles on reaction and regeneration for hydrogen production by SERP from glycerol were performed by NiO/NiAl2O4 catalyst and CaO based sorbent in a fixed-bed reactor. The results showed that hydrogen production by SERP can be clearly divided into three periods, and the experimental gaseous products were compared with non-stoichiometric thermodynamic calculations. It is obvious that H-2 purity was greatly increased, and CO2, CO and CH4 concentrations were reduced by in-situ CO2 removal during the pre-breakthrough period. It is found that enhanced hydrogen production was mainly depended on in-situ CO2 removal. The operation durations for producing high-purity hydrogen of more than 90% were decreased with the increase of the cycles. It may due to the decrease in the reactivity of CaO based sorbent after multi-cycles reaction and regeneration. (C) 2015 Elsevier Ltd. All rights reserved.