Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Yongchen Song

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Business Address:能动大楼810
Contact Information:songyc@dlut.edu.cn
E-Mail:songyc@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Effects of an additive mixture (THF plus TBAB) on CO2 hydrate phase equilibrium

Hits : Praise

Indexed by:Journal Papers

Date of Publication:2015-09-15

Journal:FLUID PHASE EQUILIBRIA

Included Journals:SCIE、EI、Scopus

Volume:401

Page Number:27-33

ISSN No.:0378-3812

Key Words:CO2 hydrate; Thermodynamic; Hydrate phase equilibrium; Additive mixture

Abstract:A decrease in hydrate formation pressure is crucial for the development of hydrate-based gas separations. Both tetrahydrofuran (THF) and tetra-n-butyl ammonium bromide (TBAB) are thermodynamic additives for hydrat-based CO2 capture, which can effectively decrease the CO2 hydrate formation pressure. To obtain fundamental data, the effects of an additive mixture (THF + TBAB) on CO2 hydrate phase equilibrium were investigated. The experiments were conducted using an isochoric method to study the effects of additive mixtures with different compositions. A mass fraction of 1% THF with the mass fraction of 0.5%, 1%, 2%, 3% and 5% TBAB, and 5% THF with 3%, 5% and 8% TBAB were used. The experiments were conducted at 276.35-291.05 K and 0.9-4.4 MPa. For all mixtures with the mass fraction of 1% THF, the effect was subtle (with the exception of the 1% THF + 5% TBAB mixture). On the other hand, the hydrate equilibrium pressure decreased dramatically when mixtures containing 5% THF were added. Compared with the addition of only THF, only TBAB or a THF + SDS additive mixture, a THF + TBAB additive mixture had numerous advantages, such as drastically decreasing the hydrates phase equilibrium pressure. In addition, the influence of the additive mixture on the induction time of hydrate formation was examined and discussed. In the present study, a mass fraction of 5% THF + 5% TBAB greatly reduced the induction time of hydrate formation compared with the other concentrations tested. (C) 2015 Elsevier B.V. All rights reserved.