Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Yongchen Song

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Energy and Environmental Engineering
Business Address:能动大楼810
Contact Information:songyc@dlut.edu.cn
E-Mail:songyc@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Numerical Simulation and Analysis of Water Phase Effect on Methane Hydrate Dissociation by Depressurization

Hits : Praise

Indexed by:期刊论文

Date of Publication:2012-02-22

Journal:INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH

Included Journals:SCIE、EI、Scopus

Volume:51

Issue:7

Page Number:3108-3118

ISSN No.:0888-5885

Abstract:The gas hydrate dissociation process is always accompanied by water production and water transfer, which may affect gas generation rate. In this study, in order to analyze the water phase effect in the process of dissociation in porous media, a two-dimensional (2-D) axisymmetric simulator is developed to model methane hydrate dissociation in porous media by depressurization. Mass transport, intrinsic kinetic reaction and energy conservation are included in the governing equations, which are discretized by finite difference method and are solved in the implicit pressure-explicit saturation (IMPES) method. Then, a series of simulations are performed to study the relationship among changes of water saturation, temperature, pressure and hydrate saturation in laboratory-scale methane dissociation by depressurization, water transfer in porous media for different outlet pressure and bath temperature, and the sensitivity analysis to water saturation. These results suggest that the front dissociation interface is wrapped in an area where water saturation is distributed in a gradient. As the water moves, the water phase plays an important role in late stage thermal conduction. Higher water saturation may lead to higher gas generation rate in the late stage. The water-unsaturated condition is also forecasted by the simulator. The implications of the data are discussed in detail.