个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中国科学院长春应用化学研究所
学位:博士
所在单位:化工学院
学科:高分子材料. 高分子化学与物理
办公地点:西部校区化工实验楼A座206
联系方式:0411-84986096,13591156428
电子邮箱:zgwang@dlut.edu.cn
Facile Preparation of Dibenzoheterocycle-Functional Nanoporous Polymeric Networks with High Gas Uptake Capacities
点击次数:
论文类型:期刊论文
发表时间:2014-05-13
发表刊物:MACROMOLECULES
收录刊物:EI、SCIE、Scopus
卷号:47
期号:9
页面范围:2875-2882
ISSN号:0024-9297
摘要:A consolidated ionothermal strategy was developed for the polymerization of thermally unstable nitriles to construct high performance materials with permanent porosity, and carbazole, dibenzofuran, and dibenzothiophene were separately introduced into covalent triazine-based networks to investigate the effects of heterocycles on the gas adsorption performance. Three nitriles, namely 3,6-dicyano-carbazole, 3,6-dicyanodibenzofuran, and 3,6-dicyanodibenzothiophene, were designed and synthesized, which were readily converted to heat-resistant intermediates at a moderate temperature and then polymerized to create highly porous poly(triazine) networks instead of the traditional one-step procedure. This documents an improved strategy for the successful construction of heterocyclic-functional triazine-based materials. The chemical structures of monomers and polymers were confirmed by H-1 NMR, FTIR, and elemental analysis. Such polymers with high physical chemical stability and comparable BET surface areas can uptake 1.44 wt % H-2 at 77 K/1 bar and 14.0 wt % CO2 at 273 K/1 bar and present a high selectivity for gas adsorption of CO2 (CO2/N-2 ideal selectivity up to 45 at 273K/1.0 bar). The nitrogen- and oxygen-rich characteristics of carbazole and dibenzofuran feature the networks strong affinity for CO2 and thereby high CO2 adsorption capacity. This also helps to thoroughly understand the influence of pore structure and chemical composition on the adsorption properties of small gas molecules.