高航

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 精密与特种加工教育部重点实验室 副主任; 中国光整加工专业委员会 主任委员; 中国生产工程学会 常务理事; 中国国际磨粒加工技术学会(ICAT)常务理事

性别:男

毕业院校:东北工学院

学位:博士

所在单位:机械工程学院

学科:机械制造及其自动化

办公地点:机械工程学院知方楼7185室

联系方式:0411-84706138 gaohang@dlut.edu.cn

电子邮箱:gaohang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Blade surface uniformity of blisk finished by abrasive flow machining

点击次数:

论文类型:期刊论文

发表时间:2016-05-01

发表刊物:INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

收录刊物:SCIE、EI、Scopus

卷号:84

期号:5-8

页面范围:1725-1735

ISSN号:0268-3768

关键字:Abrasive flow machining; Blisk; Numerical simulation; Surface finish uniformity

摘要:The blade surface roughness of blisk is of significance to performance of aero-engine on the aspects of thrust weight ratio and service life, etc. However, it is difficult to achieve uniform surface finish because of the strong geometry interferences arising from the complex structures, through the processes of manual finishing, belt grinding, and CNC polishing. In this paper, abrasive flow machining (AFM) process is adopted to polish blade surfaces of blisk with the aimto acquire qualified uniform surface finish, by virtue of AFM's excellent machining flexibility for parts with structures difficult to machine. Researches on surface finishing are taken for the proposed experimental prototype blisk with straight blades, through the approaches of both experiments and numerical simulations, where abrasive media with different mesh sizes and mass fractions are used. Experimental results show that surface roughness values near regions of leading/trailing edges are higher than those in regions of blades' center, although surface roughness of the whole blades is improved obviously after AFM process. And, results from numerical simulations indicate that there exist irregular flows of abrasive media and high-pressure gradients near the leading/trailing edges, which provides reasonable explanations why uneven surface finish of blades is not achieved. Based on these analyses, a new fixture with guild blocks is proposed and proper fixture parameters are set to efficiently regulate the abrasive media flows near leading/trailing edges, and the validation experiments show that surface finish uniformity of blades is achieved with this apparatus. The conclusion could be drawn from the studies of this paper that uniform surface finish for blisk is achievable through properly designed AFM fixtures.