![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 精密与特种加工教育部重点实验室 副主任; 中国光整加工专业委员会 主任委员; 中国生产工程学会 常务理事; 中国国际磨粒加工技术学会(ICAT)常务理事
性别:男
毕业院校:东北工学院
学位:博士
所在单位:机械工程学院
学科:机械制造及其自动化
办公地点:机械工程学院知方楼7185室
联系方式:0411-84706138 gaohang@dlut.edu.cn
电子邮箱:gaohang@dlut.edu.cn
Mechanism of damage generation during drilling of carbon/epoxy composites and titanium alloy stacks
点击次数:
论文类型:期刊论文
发表时间:2014-07-01
发表刊物:PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE
收录刊物:SCIE、EI、Scopus
卷号:228
期号:7
页面范围:698-706
ISSN号:0954-4054
关键字:Carbon/epoxy composites; titanium alloy; stacks; orbital drilling; traditional drilling; machining damage
摘要:Composite/metal stacks are widely used in aerospace structures. To study the mechanism of damage generation during drilling of carbon/epoxy composites and titanium alloy stacks, both traditional drilling and orbital drilling were used. Because the cutting parameters of the two drilling processes were different from each other, an appropriate comparing method was proposed based on the analysis of kinematics of orbital drilling and traditional drilling. The results show that high cutting temperature is the main reason for the damage generation during drilling of composite/titanium stacks. Cutting heat generated during machining of titanium alloy conducts to the composites and leads to the increase of composite temperature. High cutting temperature induces the degradation of carbon/epoxy composite properties, which results in the generation of damage during machining of composites. The cutting force in axial direction during orbital drilling is generally as high as that during traditional drilling. However, the temperature during orbital drilling is 36.3% less than that during traditional drilling. High cutting temperature and continuous chip generated during traditional drilling cause the high hole-wall roughness of titanium alloy. The lower temperature during orbital drilling is responsible for the machining quality of orbital drilling being higher than that of traditional drilling.