![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东北大学
学位:博士
所在单位:控制科学与工程学院
学科:应用数学. 应用数学. 控制理论与控制工程
办公地点:创新园大厦A0620
联系方式:电话: (+86-411) 84726020 (home) (+86-411) 84709380 (Office) 传真: (+86-411) 84707579 手机: (+86-411) 13130042458
电子邮箱:xdliuros@dlut.edu.cn
Data-based Fuzzy Rules Extraction Method for Classification
点击次数:
论文类型:会议论文
发表时间:2014-07-06
收录刊物:EI、CPCI-S、Scopus
页面范围:260-266
摘要:In this study, a two-stage method which extracts fuzzy rules directly from samples is proposed for classification. First, we introduce a neighborhood based attribute significance algorithm to select r of the most important attributes from the original attribute set. Second, the proposed algorithm generates fuzzy rule from each sample described by the selected attribute subset and finally simplifies the returned fuzzy rule-base. A confidence degree is assigned for each of the extracted fuzzy rules by counting the number of training samples covered by the rule to solve the conflicts among the rules and then the rule-base is pruned. The performance of the proposed classification method have been compared with other five classification approaches including C4.5, DTable, OneR, NNge, and PART on seven UCI data sets. The experimental results show that the proposed method is better than other methods in two aspects: the higher classification accuracy and the smaller rule-base.