![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东北大学
学位:博士
所在单位:控制科学与工程学院
学科:应用数学. 应用数学. 控制理论与控制工程
办公地点:创新园大厦A0620
联系方式:电话: (+86-411) 84726020 (home) (+86-411) 84709380 (Office) 传真: (+86-411) 84707579 手机: (+86-411) 13130042458
电子邮箱:xdliuros@dlut.edu.cn
A Global Clustering Approach Using Hybrid Optimization for Incomplete Data Based on Interval Reconstruction of Missing Value
点击次数:
论文类型:期刊论文
发表时间:2016-04-01
发表刊物:INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS
收录刊物:SCIE、EI
卷号:31
期号:4
页面范围:297-313
ISSN号:0884-8173
摘要:Incomplete data clustering is often encountered in practice. Here the treatment of missing attribute value and the optimization procedure of clustering are the important factors impacting the clustering performance. In this study, a missing attribute value becomes an information granule and is represented as a certain interval. To avoid intervals determined by different cluster information, we propose a congeneric nearest-neighbor rule-based architecture of the preclassification result, which can improve the effectiveness of estimation of missing attribute interval. Furthermore, a global fuzzy clustering approach using particle swarm optimization assisted by the Fuzzy C-Means is proposed. A novel encoding scheme where particles are composed of the cluster prototypes and the missing attribute values is considered in the optimization procedure. The proposed approach improves the accuracy of clustering results, moreover, the missing attribute imputation can be implemented at the same time. The experimental results of several UCI data sets show the efficiency of the proposed approach. (C) 2015 Wiley Periodicals, Inc.