![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东北大学
学位:博士
所在单位:控制科学与工程学院
学科:应用数学. 应用数学. 控制理论与控制工程
办公地点:创新园大厦A0620
联系方式:电话: (+86-411) 84726020 (home) (+86-411) 84709380 (Office) 传真: (+86-411) 84707579 手机: (+86-411) 13130042458
电子邮箱:xdliuros@dlut.edu.cn
Time series long-term forecasting model based on information granules and fuzzy clustering
点击次数:
论文类型:期刊论文
发表时间:2015-05-01
发表刊物:ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
收录刊物:SCIE、EI
卷号:41
页面范围:17-24
ISSN号:0952-1976
关键字:Information granules; Granular time series; Forecasting; Long-term forecasting; Dynamic time warping
摘要:In spite of the impressive diversity of models of time series, there is still an acute need to develop constructs that are both accurate and transparent. Meanwhile, long-term time series prediction is challenging and of great interest to both practitioners and research community. The role of information granulation is to organize detailed numerical data into some meaningful, semantically sound entities. With this regard, the design of time series forecasting models used the information granulation is interpretable and easily comprehended by humans. In order to cluster information granules, a modified fuzzy c-means which does not require that data have the same dimensionality is proposed. Then, we develop forecasting model combining the modified fuzzy c-means and information granulation for solving the problem of time series long-term prediction. Synthetic time series, chaotic Mackey-Glass time series, power demand, daily temperatures, stock index, and wind speed are used in a series of experiments. The experimental results show that the proposed model produces better forecasting results than several existing models. (C) 2015 Elsevier Ltd. All rights reserved.